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Abstract : 

A production-inventory model for a deteriorating item with time-varying demand and fully backlogged 

shortages is developed for a two warehouse system. For display and storage of inventory, management 

hires one warehouse of finite capacity at the market place, called own warehouse abbreviated as OW 

and another warehouse with large capacity as it may be required at a distance place from the market, 

called rented warehouse abbreviated as RW. Though the time of transporting items from RW to OW is 

ignored the transportation cost for transporting items is taken to be dependent on the transported amount. 

Here the objective is to minimize the total cost for a finite planning horizon. A genetic algorithm (GA) 

is designed to determine the optimum number of production cycles and the cycle times within a finite 

planning horizon. In this GA a subset of better children is included with the parent population for next 

generation and size of this subset is a percentage of the size of its parent set. Performance of this GA 

with respect to some other GAs is compared. Two particular cases (i) with non-deteriorating items and (ii) 

without shortages are also investigated. Finally, to illustrate the model and to show the effectiveness of 

the proposed approach, a numerical example is provided. With respect to the demand 

parameters, a sensitivity analysis is performed and presented. In this paper, we have pointed out that 

the expression of Lee and Hsu (2009) can be obtained as a particular case. 
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1 Introduction :- 

Demand is defined as the number of units of an item required by the customers in a unit time. 

Generally, it usually depends on decisions of people outside the organization. It may be constant or 

vary with stock, initial lot size, price or time. Normally, demand of seasonal products such as rice, 

vegetable, etc. increases with time. Several researchers like Silver and Meal (1969), Hariga (1994), 

Goyal et al. (1996), Kar et al. (2001), Ghosh and Chakrabarty (2009), Mishra and Singh (2011) etc. 

have analysed inventory models considering time-varying demand. 

Natural deterioration of products in the absence of proper preservation conditions is an important 

feature of real-life inventory system. In general, deterioration is defined as decay, damage, spoilage 

etc. that results in decrease of usefulness from the original one. Food grains, vegetables, fruits, etc. are 

examples of such products. Several authors such as Mandal and Maiti (1999), Kar et al. (2006) and 

others developed inventory models with different types of deterioration i.e. constant, random or 

imprecise. Goyal and Giri (2001) presented a survey of research papers listing all the papers with 

deterioration. 

The time period over which the inventory level will be controlled is called the time horizon. This 

parameter may be finite or infinite depending upon the nature of the inventory system for the 

commodity. Normally, inventory models are developed with the assumption that life time of the product 

is infinite. According to Gurnani (1985) and Chung and Kim (1989), the assumption of an infinite 
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planning horizon is not realistic due to several reasons such as variation of inventory costs, changes in 

product specifications and designs, technological changes, etc. Moreover, for seasonal products like 

fruits, vegetables, warm garments, etc., the business period is rather finite, not infinite. Bhunia and 

Maiti (1997), Mahapatra and Maiti (2006) and others developed some EOQ models in which time 

horizon has been considered as finite. 

Most of the traditional inventory models are developed by considering a single warehouse (own 

warehouse) with unlimited capacity. But, in real situation (e.g. in the busy market place like super 

market, corporation market, etc.) the capacity of a warehouse is limited. Therefore, the existing single 

warehouse inventory models are unsuitable for the situation that needs to store a large stock. In fact, 

there exists many practical situations that force inventory managers to hold more units than he/she can 

store in OW. For example, when an attractive price discount for bulk purchase is available or the cost 

of procuring goods may be higher than the other related costs or the demand of the item may be very 

high etc., management decides to purchase (or produce) a large amount of units at a time. Then for 

storing the excess units, one (or more) additional warehouse(s) is hired on rental basis. This warehouse 

(RW) may be located near the OW or a little away from it. Further, the inventory costs (carrying cost 

and deterioration cost) in RW is usually higher than those in OW due to additional cost of maintenance, 

material handling, better preserving facilities etc. Moreover, units should be always available at OW 

for the convenience of business as the actual service to the customer is carried out at OW only. Hence, 

the units are first stored in OW and once OW is fulfilled, the units are kept in RW. But RW is cleared 

first as OW is kept full transferring the units continuously from RW to OW. 

In 1976 Hartley first introduced the two warehouse problem in his book ‘Operations Research-A 

Managerial Emphasis’. In his analysis, he ignored the cost of transportation for transferring the goods 

from RW to OW. Sarma (1987) extended Hartley’s model to cover the transportation cost from RW to 

OW that is considered to be a fixed constant independent of the quantity being transported. Goswami 

and Chaudhuri (1992) further developed the model with or without shortages by assuming that demand 

varies over time with linearly increasing trend and the transportation cost from RW to OW depends on 

the quantity being transported. Next Pakkala and Achary (1992a, 1992b) extended the two warehouse 

models with finite rate of replenishment and shortages taking time as discrete and continuous variable 

respectively. In their models, the scheduling period was taken as constant but the transportation cost 

for transferring the stocks from RW to OW was not taken into account. Besides, the ideas of time 

varying demand for deteriorating units with two storage facilities were considered by Benkherouf 

(1997) and Bhunia and Maiti (1997, 1998). All the above models were developed under the assumption 

that inventory is to be released directly and continuously in each warehouse. Murdeshwar and Sathi 

(1985), Pakkala and Achary (1994) considered bulk release model that inventory in RW first 

transformed to OW before it release to the customer. However, the above models are based on infinite 

planning horizon with demand parameters reset at the beginning of each cycle. Kar et al. (2001) developed 

a two-storage inventory model with linear time dependent demand over a finite time horizon. Lee and 

Ma (2000) proposed a two-warehouse model and a heuristic solution of equal production cycle times 

with a general time- dependent demand function and a finite planning horizon. Recently, Lee and Hsu 

(2009) extended the Lee and Ma’s model by considering finite rate of replenishment and use variable 

production cycle time (VPCT) approach to determine the number of production cycles and the 

successive production cycle times within a finite planning horizon. 

In this paper, a deterministic two-warehouse inventory model for a deteriorating item is developed 

with finite replenishment over a finite time horizon. Here we extend the model of Lee and Hsu (2009), to 

incorporate complete backlogging. The model has been defined as a cost minimization model to 

determine the optimum number of production cycles and successive production cycle times over a 

finite planning horizon. A genetic algorithm with varying population size approach is used to solved 

the model. Moreover, the performance of the proposed algorithm is compared with conventional GA 

in numerical illustrations. The highlights of the Paper • In this paper, a deterministic two-warehouse 

(RW,OW) inventory model for a deteriorating item is developed. 

• For display and storage of inventory, management hires OW of finite capacity at the market place 

and RW with large capacity as it may be required at a distance place from the market. 

• Time-varying demand and fully backlogged shortages is developed for two warehouse system. 
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• Time of transporting items from RW to OW is ignored. 

• The transportation cost for transporting items is taken to be dependent on the transported amount. 

• The model has been defined as a cost minimization model to determine the optimum number of 

production cycles and successive production cycle times over a finite planning horizon. 

• A genetic algorithm with varying population size approach is used to solved the model. 

 

2 Assumptions and notations 

The mathematical model in this paper is developed on the basis of following assumptions and 

notations: 

Assumptions 

(i) Inventory system involves two warehouses OW and RW and only one item andis a self 

production system. 

(ii) The time horizon is finite. 

(iii) The time horizon accommodates N full cycles. 

(iv) Shortages are allowed. 

(v) Lead time is zero. 

(vi) The OW has a fixed capacity whereas the RW has unlimited capacity.(vii) Set- up time is 

negligible. 

(viii) Production rate is known and constant. 

(ix) The constant fraction of on hand inventory gets deteriorated per unit time.(x) Transportation cost 

be negligible. 

(xi) The inventory carrying cost in RW is higher than that in OW. 

 

Notations 

(i) P = Production rate in each cycle. 

(ii) W = Capacity of OW. 

(iii) W1 = Maximum shortages allowed. 

(iv) qi1(t) = On-hand inventory of the item at time t for ith cycle, when shortages are allowed. 

(v) qi2(t) = On-hand inventory of the item at time t for ith cycle, in OW. 

(vi) qi3(t) = On-hand inventory of the item at time t for ith cycle, in RW. 

(vii) C1 = The set-up cost per production run. 

(viii) C2 = Cost of a deteriorated unit. 

(ix) Cs = The shortage cost per unit per unit time. 

(x) Cow = The carrying cost per inventory unit held in OW per unit of time. 

(xi) Crw = The carrying cost per inventory unit held in RW per unit of time. 

From assumption (xi) we have Crw > Cow. 

(xii) f(t) = The demand rate at time t, f(t) < P 

(𝑥𝑖𝑖𝑖) 𝜃1, 𝜃2 = constant deterioration rate in OW and RW respectively, where 0<𝜃1 < 1,0 < 𝜃2 < 1 

(xiv) H = Total planning horizon. 

(xv) N = The number of production cycle during the entire time horizon H. 

(xvi) m = Boundary cycle number when switching from L2 to L1 in the case of time increasing 

demand. 

(xvii) SL2 = {i : both OW and RW are used in cycle i,i = 1,2,...,,m}. 

(xviii) SL1 = {j : only OW is used in cycle j,j = m + 1,m + 2,...,N}. 

(xix) ti0 = The beginning time of the ith production cycle, i ∈ SL2. 

(xx) ti1 = The initial time of the ith cycle in OW, for all i ∈ SL2. 

(xxi) ti2 = The end of the ith cycle to build up W units in OW for all i, i ∈ SL2. 

(xxii) ti3 = The end of production at the ith cycle for all i, i ∈ SL2. 

(xxiii) ti4 = The end of depletion of all inventory units in RW at the ith cycle for all i, i ∈ SL2. 

(xxiv) ti5 = The end of depletion of all inventory units in OW at the ith cycle for all i, i ∈ SL2. 

(xxv) Ti = The end of time of the ith production cycle, i ∈ SL2. 

(xxvi) qj1(t) = On-hand inventory of the item at time t for jth cycle, when shortages are allowed. 
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(xxvii) qj2(t) = On-hand inventory of the item at time t for jth cycle, in OW. 

(xxviii) tj0 = The beginning time of the jth production cycle, j ∈ SL1. 

(xxix) tj1 = The initial time of the jth cycle in OW, for all j ∈ SL1. 

(xxx) tj2 = The end of production at the jth cycle for all i, j ∈ SL1. 

(xxxi) 𝑡𝑗3 =The end of depletion of all inventory units in OW at the jth cycle for all j ,j ∈ SL1. 

(xxxii) Tj = The end of time of the jth production cycle, j ∈ SL1. (xxxiii) TC 

= Total inventory cost during H. 

 

3 Model formulation 

In the development of the two warehouse production model, we assume that there are N cycles during 

the time horizon H. At the beginning of the ith cycle, W1 units of backorders are carried over from the 

previous cycle. The production run begins at t = ti0 and while production and demand occur 

simultaneously, backorders are made up to t = ti1 . Inventory items in OW begin to accumulate up to W 

units with deterioration. After t = ti2 the produced quantity exceeding W must be stored in RW and 

production continuous up to t = ti3 (cf. Fig. 1). At the end of production, t = ti3 the inventory in RW would 

be depleted due to demand and deterioration and it vanishes at. During t = ti1 and t = ti4, inventory in 

OW are also lowered at a level below due to deterioration only. The remaining stock in OW are then fully 

depleted at t = ti5 due to both demand and deterioration and shortages starts at t = ti5 and continuous 

upto time t = Ti when next cycle begins. This cycle repeats again and again. Similarly, the jth cycles 

occur only within OW. 

 
Fig. 1 Graphical representation of a two-warehouse production system with time varying demand 

For those cycles of L2, the differential equations describing the inventory level are given as follows: 

 
Using boundary conditions that qi1(ti0) = −W1, qi1(ti1) = 0, qi1(ti5) = 0, qi2(ti1) = 

0, qi2(ti2) = W, qi2(ti5) = 0, qi3(ti2) = 0, and qi3(ti4) = 0, the above equations can be solved  

for f(t) = a.ebt. 
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The solutions of the differential equations (1) are given by, 

 

(4) 

the solutions of the differential equations (2) are given by, 

 

 

(5) 

and the solutions of the differential equations (3) are given by, 

 
Using the initial condition, at t = ti0, qi1(t) = −W1 from (4) we get, 

 
(7) 

Using the continuity condition, at t = ti2, from (5) we get, 

 

 

 

  

 

(8) 

Using the continuity condition, at t = ti3, from (6) we get, 

 

(9) 

Using the continuity condition, at t = ti4, from (5) we get, 

 

 

(10) 

Using the boundary condition, at t = Ti, qi1(t) = −W1 from (4) we get, 

. (11) 

Now the inventory items held in RW can be derived as 
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Similarly, the inventory levels held in OW can be derived as 

 
The inventory items deteriorated in cycle i is given by 

14 

The inventory item shortages in cycle i is given by 

 
Again for those cycles using OW only (L1), the differential equations describing the inventory level 

are given as follows: 

 
 

,16 

and 

 
(17) 

Using boundary conditions that qj1(tj1) = 0, qj1(tj3) = 0, qj2(tj1) = 0 and qj2(tj3) = 0, the above 
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equations can be solved for above case as follows: 

The solutions of the differential equations (16) are given by, 

 
(18) 

the solutions of the differential equations (17) are given by, 

 
Using the boundary condition, at t = tj0, qj1(t) = −W1 from (18) we get, 

 
 

. (20) 

Using the continuity condition, at t = tj2, from (19) we get, 

 

 

 

(21) 

Using the boundary condition, at t = Tj, qj1(t) = −W1 from (18) we get, 

. (22) 

Here the inventory items held in RW can be derived as 

qRW,j = 0. 

Similarly, the inventory levels held in OW can be derived as 

 
 (23) 

The inventory items deteriorated in cycle j is given by 
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(25) 

The inventory item shortages in cycle j is given by 

 
 

The total system cost during the planning horizon H can then be expressed as 

 
So, the above model is formulated as the unconstrained minimization problem of total cost i.e. 

Minimize TC. 

 

Particular cases 

 

Now, two particular cases of the general model are further investigated: 

(i) With non-deteriorating items, shortages allowed but fully backlogged. 

When there are non-deteriorating items in both warehouses, i.e., when both θ1 and θ2 approach 

zero, the following results are derived: 
Under those cycles of L2, we have when θ2 → 0, then 

 
When θ1 → 0, then 

 
 

When θ1,θ2 → 0, then 

Di = 0 .(30) 

 

There is no effect in Si, since there is no inventory. Under those cycles of L1, we have when θ2 → 0, 

then 

qRW,j = 0. (31) 

 

When θ1 → 0, then 

 
When θ1,θ2 → 0, then 
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Dj = 0. (33) 

 

There is no effect in Sj, since there is no inventory. 

When θ1,θ2 → 0, then the total system cost can be written as 

 

                (34) 

(i) Without shortages, but with deteriorating items in both OW and RW. The inventory items held in 

RW can be derived as 

                         35 

Similarly, the inventory levels held in OW can be derived as 

 
 

The inventory items deteriorated in cycle i is given by 

Di = θ1.qOW,i + θ2.qRW,i.                                         37 

The inventory item shortages in cycle i is given by 

Si =   0.                             38 

The inventory items held in RW can be derived as 

qRW,j = 0.             39 

          

Similarly, the inventory levels held in OW can be derived as 

 

 
The inventory items deteriorated in cycle j is given by 

Dj = θ1.qOW,j.         4 1  

The inventory item shortages in cycle j is given by 

Sj = 0. (42) 

The total system cost during the planning horizon H can then be expressed as 
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          (43) 

It is seen that the expression (43) is the same expression (19) of Lee and Hsu (2009) with f(t) = a.ebt. 

 

4 Solution procedure 

The above model is solved by using genetic algorithm with varying population size approach, 

discussed in Sect. 4.1, and also solved by conventional genetic algorithm. Our conventional GA 

consists of parameters, population size = 50, probability of crossover = 0.5, probability of mutation = 

0.2, maximum generation = 50. A real number presentation is used here. In this representation, each 

chromosome X is a string of n numbers of genes which denote the decision variable. For each 

chromosome X, every gene, which represents the independent variables, are randomly generated between 

their boundaries until it is feasible. In this conventional GA, arithmetic crossover and random mutation 

are applied to generate new offspring’s. Our varying population size approach of GA consists of 

parameters, maximum lifetime of a chromosome = 8, minimum lifetime of a chromosome = 1, 

probability of mutation = 0.2, maximum generation = 15, number of solutions = 15. 

 

 Genetic algorithm (varying population size approach) 

After development of Genetic Algorithm (GA) by Holland (Holland 1975; Michalewicz 1992), it has 

been extensively used/modified to solve complex decision making problems in different field of 

science and technology. A GA normally starts 

with a set of potential solutions (called initial population) of the decision making problem under 

consideration. Individual solutions are called chromosome. Crossover and mutation operations happen 

among the potential solutions to get a new set of solutions and it continues until terminating conditions 

are encountered. As mentioned earlier behavior and performance of a GA is directly affected by the 

interaction between the parameters, i.e., selection process of chromosomes for mating pool, pc, pm, 

etc. Recently, Last and Eyal (2005) developed a GA with varying population size, where chromosomes are 

classified into young, middle age and old according to their age and lifetime. Genotype diversity, 

Phenotype diversity of the final population are obtained to measure the performance of the GA. 

Following Last and Eyal (2005), here, a GA with varying population size is developed where 

chromosomes are classified into young, middle age and old (in fuzzy sense) according to their age and 

lifetime. Following comparison of fuzzy numbers using possibility theory (Dubois and Prade 1980; 

Liu and Iwamura 1998), here crossover probability is measured as a function of parent’s age interval 

(a fuzzy rule base on parents age limit is also used for this purpose). In this GA a subset of better 

children is included with the parent population for next generation and size of this subset is a percentage 

of the size of its parent set. Chromosomes with age exceeds lifetime are discarded from the population 

at the beginning of every iteration. General structure of this GA is presented below. 

1. Set iteration counter t = 0 and maximum generation M = M0 
2. Randomly generate initial population p(t) 
3. Evaluate initial population p(t) 
4. While t ≤ M do 

5. t = t + 1 

6. Increase age of each chromosome 

7. For each pair of parents do 

8. Determine probability of crossover pc for the selected pair of parent 

9. Perform crossover with probability pc 

10. For each offspring perform mutation with probability pm. 

11. Store offsprings into offspring set 
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12. End do 

13. Select a percent of better offsprings from the offspring set and insert into p(t) 

14. Remove from p(t) all individuals with age grater than their lifetime. 

15. Evaluate p(t) 

16. Remove all offsprings from the offspring set 

17. End While 

18. End Algorithm 

 

GA procedures for the proposed model 

(a) Representation: A ‘n dimensional real vector’ X = (x1,x2,...,xn) is used to represent a solution, 

where x1,x2,...,xn represent n decision variables of the problem. 

(b) Initialization: N such solutions Xi = (xi1,xi2,...,xin), i = 1,2,...,N are randomly generated by random 

number generator within the boundaries of each variable. Value of the objective function due to the 

solution Xi, is taken as fitness of Xi. Let it be F(Xi). At the time of initialization age of each solution 

is set to zero. Following Michalewicz (1992) at the time of birth life-time of Xi is computed using the 

following formula: 

 
where Maxlt and Minlt are maximum and minimum allowed lifetime of a chromosome, K = (Maxlt − 

Minlt)/2. Maxfit, Avgfit, Minfit represent the best, average and worst fitness of the current population. 

To solve our model it is assumed that Maxlt = 8 and Minlt = 1, pm = 0.2, M0 = 15, N = 15. According to 

the age a chromosome can belong to any one of age interval—young, middle-age or old, whose 

membership function is presented in Fig. 2. 
(c) Crossover: 

I. Determination of probability of crossover (pc): Probability of crossover pc, for a pair of parents 

(Xi,Xj) is determined as below: 

(i) At first age intervals (young, middle-age, old) of Xi and Xj are determined by making possibility 

measure of fuzzy numbers- young, middle-age, old with respect to their age. 
(ii) After determination of age intervals of the parents their crossover probabilityis determined as a 

linguistic variable (low, medium or high) using a fuzzy rule base as presented in Table 1. Membership 

function of these linguistic variables are presented in Fig. 3. 

(iii) Center of gravity (Buckley and Eslami 2002) of crossover probability is taken as value 

of pc for the parents (Xi,Xj). 

Fig.2 Membership function of age intervals 

 
 

Fig.3 Membership function of crossover probabilities 
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Table 1 Fuzzy rule base for crossover probability 

Parent 2 Parent 1  

 Young Middle-age Old 

 

Young 

 

Low 

 

Medium 

 

Low 

Middle-age Medium High Medium 

Old Low Medium Low 

II Crossover process: For each pair of parent solutions Xi, Xj a random number c is generated from 

the range [0,1] and if c > pc then crossover operation is made on Xi, Xj. To made crossover operation 

another random number r is generated randomly from the range (0,1) and their off springs Y1 and Y2 

are obtained by the formula: 
Y1 = rXi + (1 − r)Xj, Y2 = rXj + (1 − r)Xi. 

 

 
(d) Mutation: 

(i) Selection for mutation: For each offspring generate a random number r from the range [0,1]. If r < 

pm then the solution is taken for mutation, where pm is the probability of mutation. 

(ii) Mutation process: To mutate a solution X = (x1,x2,...,xn) select a random integer r in the range 

[1,n]. Then replace xr by randomly generated value within the boundary of rth component of X. 
(e) Selection of offspring: Maximum population growth in a generation is assumed as fifty percent. 

So not all off springs are taken into the parent set for next generation. At first offspring set is arranged 

in descending order in fitness. Then better solutions are selected and entered into parent set. 
(f) Implementation: With the above function and values the algorithm is implemented using C-

programming language. 

 

5 Numerical illustration 

An example is presented to illustrate the effect of the inventory model developed here with the following 

numerical data: C1 = 2500, P = 1800, C2 = 50, Cs = 0.75, 

 
Using these values, (27), (34) and (43) have been solved using GA with varying population size 

approach and conventional GA. The results are presented in the following Tables 2, 3, 4, 5. 

 

6.Sensitivity analysis As the time-dependent demand, f(t) = a.ebt, the parameters ‘a’ and ‘b’ influence 

the whole production-inventory system 
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values of minimum total costs are presented in Tables 6 and 7 against different values of ‘a’ and ‘b’ for 

N = 1 and N = 2 respectively. In both cases, it is observed from Tables 6 and 7 that with the increase of 

either ‘a’ or ‘b’, demand increases and as result, total cost of the inventory system decreases gradually. 

This is because, with the increase of demand, deteriorated amount decreases and hence total cost 

decreases. 

 

6 Discussion 

In this paper, we developed a production-inventory model for a deteriorating item with time-varying 

demand by considering fully backlogged shortages under two warehouse facilities. The proposed model 

is solved numerically using both GA with 

Table 4 The optimal solution for two-warehouse model with time increasing demand without 

shortages 

using genetic algorithm (with varying population size approach [VPSA] and conventional approach 

[CA]) 
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Table 5Highest stock level for two-warehouse model with time increasing demand using genetic 

algorithm (with varying population size approach) 

N Highest stock level (including OW 

 and RW) 

1 974.68 

2 887.39 

3 853.66 

4 839.99 

5 821.39 

6 818.77 

7 816.02 

 

Table 6 Sensitivity analysis for two-warehouse model with time increasing demand using genetic 

algorithm (with varying population size approach) when N = 1 

 
 

500 

 

0.005 

 

39237.20 

 

500 

 

0.01 

 

39212.08 

450 0.005 39246.28 450 0.01 39234.62 

400 0.005 39283.11 400 0.01 39271.59 

350 0.005 39299.54 350 0.01 39292.36 

300 0.005 39318.95 300 0.01 39311.44 

500 0.015 39178.26 500 0.02 39152.55 

450 0.015 39198.30 450 0.02 39171.35 

400 0.015 39220.92 400 0.02 39193.44 

350 0.015 39240.01 350 0.02 39219.53 

300 0.015 39258.66 300 0.02 39237.20 

varying population size approach and conventional GA. Two particular cases (i) with non-

deteriorating items (θ1 = 0,θ2 = 0) and (ii) without shortage are also presented and solved using above 

two techniques. From the numerical illustration, we have seen that GA with varying population size 

approach gives the better result (less cost) than the conventional GA for all the cases. 
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Table 7 Sensitivity analysis for two-warehouse model with time increasing demand using - 

varying population size approach) when N = 2 

 

  

0.0 34248.5 

500 0.005 34269.64 500 1   6 

450 0.005 34277.44 450 0.0 34261.5 

    1   2 

400 0.005 34293.73 400 0.0 34276.5 

    1   6 

350 0.005 34312.33 350 0.0 34291.4 

    1   7 

300 0.005 34321.53 300 0.0 34304.7 

    1   7 

500 0.015 34229.64 500 0.0 34212.0 

    2   1 

450 0.015 34247.15 450 0.0 34230.5 

    2   5 

400 0.015 34264.73 400 0.0 34247.9 

    2   9 

350 0.015 34279.52 350 0.0 34264.7 

    2   3 

300 0.015 34292.45 300 0.0 34282.5 

    2   7 

 

7 Conclusion 

This study presents a two-warehouse (OW and RW) production inventory model for deteriorating items 

with time-varying demand and constant production rate. Moreover, it is assumed that the shortages are 

allowed and backlogged completely. Under these conditions, the problem is formulated as a non-linear 

programming problem and a genetic algorithm with varying population size is proposed to solve it. 

Results in this study provide a valuable reference for decision makers in planning and controlling the 

inventory management. Finally, a future study will incorporate more realistic assumptions in the 

proposed model, such as variable deterioration rate, stochastic nature of demand and production rate. 
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